Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Rozměr: px
Začít zobrazení ze stránky:

Download "Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace"

Transkript

1 RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem, býti studentem určitého ročníku, mít stejný datum narození a samozřejmě i vysloveně matematicky formulované vztahy jako býti větší než, býti podmnožinou, býti dělitelem atd. Přejděme k definici pojmu binární relace. Definice. Za binární relaci mezi množinami A a B budeme považovat každou podmnožinu kartézského součinu množin A B. Binární relací na množině A budeme rozumět každou podmnožinu kartézského součinu množin A A. Relace mezi množinami A a B může být i prázdná podmnožina nebo množina A B. Skutečnost, že dva prvky a, b jsou v relaci R A B, tj. (a, b) R budem obvykle vyjadřovat zápisem a R b. V dalším budeme místo slovo binární vynechávat a místo binární relace budeme říkat krátce jen relace. Poznamenejme také, že každé zobrazení f množiny A do množiny B je relace. Dvojice prvků a A a b B jsou v relaci f, právě tehdy, když je f(a) = b. Zobrazení je speciální případ relace. Aby relace R byla zobrazení musí platit: je li a R b a a R c, potom je nutně b = c. S relacemi můžeme provádět veškeré operace, které umíme dělat s množinami. Zavádíme i pojem podrelace. Relace S je podrelací relace R, je lis R. Jsou li R a S relace mezi A a B, pak jsou relacemi mezi A a B i množiny R S a R S. Doplnkěm relace R je relace (A B) \ R. Naříklad pro relace býti menší, býti menší nebo rovno a býti rovno na množině R platí, že býti menší je podrelací býti menší nebo rovno a býti menší nebo rovno je sjednocením relací býti menší a rovno. Ke každé relaci R mezi množinami A a B můžeme definovat inverzní relaci R 1 mezi množinami B a A takto: b R 1 a, právě tehdy, když je a R b. Uvědomme si, že z toho že relace R je zobrazení, neplyne, že relace R musí také být zobrazení. Uvažujme například zobrazení S z množiny všech reálných čísel R do R definované a S b b = a 2. Relace S 1 není zobrazení, protože je například dvojice (1, 1) a ( 1, 1) jsou obě v relaci S 1. Lze a je účelné definovat i skládání relací. Je li R A B a S B C definujeme relaci R S mezi množnami A a C takto: a R S c, právě tehdy, když existuje prvek b B takový, že je a R b a b S c. Skládaní relací je asociativní, tj. je li R A B, S B C a T C D, pak je R (S T ) = (R S) T. Skládání relací ale není komutativní, tj. nemusí platit rovnost R S = S R i když je složení v obou případech definováno. Například pokud relace R je býti sourozencem (bratrem nebo sestrou) a relace S je býti potomkem (synem nebo dcerou), je relace R S rovna R a relace S R je býti synovcem nebo neteří. Samozřejmě pokud pro všechna a, b platí: a R b b R a a a S b b S a, je R S = S R. Vidíme, že je asi vhodné zkoumat i další vlastnosti relací na množinách a jejich vztahy.

2 2 Vlastnosti relací na množině Definice. Řekneme, že relace R na množině A je 1) reflexivní, jestliže pro všechna a A platí: a R a; 2) symetrická, jestliže pro všechna a, b A platí: je li a R b, pak je b R a; 3) antisymetrická, jestliže pro všechna a, b A platí: je li a R b a b R a, pak je a = b; 4) tranzitivní, jestliže pro všechna a, b, c A platí: je li a R b a b R c, pak je nutně a R c. Uveďme si některé příklady. Relace na množině R všech reálných čísel je reflexivní, tranzitivní a antisymetrická a není symetrická. Relace < na množině R není reflexivní, není symetrická a je tranzitivní a antisymetrická. Relace = na množině R je reflexivní, symetrická, tranzitivní i antisymetrická. Definujeme li na množině R relaci R předpisem x R y, právě tehdy, je li x y 1, pak máme reflexivní a symetrickou relaci, která není tranzitivní. Je li R relace na množině A, pak lze přirozeným způsobem definovat relaci na kartézském součinu A n = A A předpisem (a 1, a 2,..., a n ) R n (b 1, b 2,..., b n ), právě tehdy, když je a i R b i, pro všechna i {1, 2,..., n}. Takto definovaná relace se nazývá kartézskou mocninou relace R nebo relací indukovanou relací R. Často se pro relaci na množině a relaci indukovanou touto relací na kartézské mocnině množiny používá tentýž symbol. Ukažte, že se výše uvedené vlastnosti relací zachovávají při kartézském umocňování relací. Ekvivalence Definice. Řekneme, že relace R na množině A je ekvivalence, je li reflexivní, symetrická a tranzitivní. Ekvivalence představují velmi významný příklad relací a jsou studovány nejen v matematice, ale i všech ostatních vědách. Každá ekvivalence na množině A rozdělí množinu A na systém disjunktních podmnožin, které nazýváme třídy ekvivalence. Je li R evivalence na množině A, pak pro každý prvek a A určuje jednoznačně podmnožinu A[a] = {x A; a R x} množiny A. Přitom dva prvky a, b A určují tutéž podmnožinu, tj. je A[a] = A[b], právě tehdy, je li a R b. Je zcela evidentní, že {A[a]; a A} = A a A[a] A[b] = pro a b. Platí také opačné tvrzení. Je li množina A sjednocením disjunktních podmnožin, tj. A = {A i ; i I} a A i A j = pro i j, pak relace R definovaná předpisem a R b právě tehdy, existuje li i I, takové, že a A i a b A i je ekvivalence na množině A. Na každé množině A je možno definovat dvě triviální ekvivalence. První je identita definovaná vztahem id A = {(a, a); a A}, při které nejsou žádné dva různé prvky ekvivalentní. Druhá triviální relace je relace A A, která dává všechny prvky do jedné třídy, tedy každé dva prvky množiny A jsou ekvivalentní. Uveďme si nějaké netriviální příklady ekvivalencí. Na množině Z = {0, ±1, ±2, ±3,... } všech celých čísel definujme relaci R předpisem: m R n právě tehdy, když je číslo m n sudé, tj. m n {0, ±2, ±4 ± 6,... }. Ukažte, že tato relace je skutečně reflexivní, symetrická a tranzitivní. Obdobně lze definovat pro každé přirozené číslo p na množině Z ekvivalenci R(p) předpisem: m R(p) n právě tehdy, když je číslo m n je násobkem čísla p, tj. m n = t p pro nějaké číslo t Z. Dále budeme relace R(p) označovat symbolem p a budeme říkat, že celá čísla m a n jsou ekvivalentní modulo p, je li m p n. Nechť M je konečná množina. Na množině P (M) všech podmnožin množiny M definujme relaci R takto: pro A M, B M je A R B právě tehdy, když mají obě podmnožiny

3 A a B stejný počet prvků. Ukažte, že takto definovaná relace je ekvivalence na množině P (M). Nechť M je množina všech výrokových formulí vytvořených z nějaké množiny výroků. Na této množině definujme relaci R takto: řekneme, že formule α a β jsou v relaci R právě tehdy, je li formule α β tautologií. Opět snadno ověříte, že má daná relace vlastnosti ekvivalence. Uspořádání Další velmi významný příklad relací jsou tzv. relace uspořádání, nazývané též někde částečné uspořádání. Definice. Řekneme, že relace R na množině A je uspořádání (částečné uspořádání), je li R reflexivní, antisymetrická a tranzitivní relace. Množinu A na které je definována relace uspořádání pak nazýváme uspořádanou množinou. Relace uspořádání budeme obvykle značit symboly nebo. Symbolem a < b resp. a > b budeme označovat skutečnost, že a b a a b resp. a b a a b. Relace < a > již nejsou relace uspořádání. Přesto se někdy se tyto relace nazývají ostré uspořádání. Říkáme, že dva prvky a a b z uspořádaná množiny (A, ) jsou srovnatelné, jestliže je a b nebo b a a že jsou nesrovnatelné, jestliže není ani a b ani b a. Uspořádaná množina (A, ) se nazývá úplně uspořádanou množinou, nebo řetězcem, jestliže každé dva její dva prvky jsou srovnatelné, tj. je a b nebo b a. Ověřte si, že inverzní relace k uspořádání je také uspořádání. Jako příklady úplně uspořádaných množin lze uvést množinu R všech reálných čísel, množinu Z všech celých čísel a množinu N všech přirozených čísel vzhledem ke známému přirozenému uspořádání. Jako příklad uspořádané množiny, která není úplně uspořádáná, můžeme uvést množinu uspořádanou množinu (P (M), ) všech podmnožin (včetně prázdné podmnožiny ) nějaké alespoň dvouprvkové množiny M, kde A B (pro A, B P (M)) znamená, že každý prvek z množiny A je nutně i prvkem množiny B. Jsou li a a b dva různé prvky z M, pak jednoprvkové podmnožiny {a} a {b} množiny M jsou dva nesrovnatelné prvky v uspořádané množině (P (M), ). Dalším příkladem uspořádané množiny, která není úplně uspořádanou množinou, je množina všech přirozených čísel N na které je definován relace R na základě dělitelnosti čísel, tj. m R n právě tehdy, když existuje číslo t N tak, že je n = m t. Ověřte, že takto definovaná relace je skutečně reflexivní, antisymetrická a tranzitivní. Je zřejmé, že je li (A, ) uspořádaná množina, pak (A n, ), kde na A n je relace indukovaná uspořádáním na A, je opět uspořádanou množinou. Je li (A, ) úplně uspořádaná množina, pak ale (A n, ) nemusí být úplně uspořádanou množinou a také jí není pokud množina A má alespoň dva prvky. Když ale například na množině A A definujeme relaci R předpisem (a 1, a 2 ) R (b 1, b 2 ), právě tehdy, jesliže je a 1 < b 1 nebo je a 1 = b 1 a zároveň a 2 b 2, pak relace R je úplné uspořádání. Ověřte si to. Takto definované relaci se říká lexikografické uspořádání. Pojem lexikografického uspořádání ještě zobecníme. Inspirujeme se při tom obecně známým postupem při kterém vytváříme různé abecedně řazené seznamy. Mějme konečnou uspořádanou množina (A, ), kterou můžeme nazývat abeceda. Označme S(A) množinu všech konečných posloupností prvků z A, tj. S(A) = A A 2 A 3 = A i. Prvky této množinu můžeme nazývat slova i N nad abecedou A). A na této množině budeme definovat tzv. lexikografické uspořádání. 3

4 4 Definice. Nechť (A, ) je konečná uspořádaná množina. Lexikografickým uspořádáním (které je indukováno uspořádáním ) na S(A) nazveme relaci definovanou takto: (x 1, x 2,..., x r ) (y 1, y 2,..., y s ), právě tehdy,když nastává jedna z následujících dvou možností: existuje k r takové, že je x i = y i pro všechna i < k a je x k < y k nebo je r s a je x i = y i pro všechna i r. Věta. Lexikografické uspořádáním (které je indukováno uspořádáním ) na S(A) je uspořádání. Pokud je navíc (A, ) úplně uspořádaná množina, je i lexikografické uspořádání úplným uspořádáním na množině S(A). Ukažme si alespoň jeden příklad. Nechť A = {a, b, c, d,..., z} je množina všech 26 písmen mezinárodní abecedy, která je abecedně uspořádána, tj. je a < b < c < z. V lexikograficky uspořádané množině slov S(A) pak platí: hora horakova, hora vlk, horak horal apod. Pokud bychom chtěli rozlišovat příjmení a jméno a chtěli, aby v lexikografickém uspořádání platilo, že hora milan horak jan (uvědomme si, že je horakjan horamilan), musíme do abecedy přidat ještě jeden znak, např a rozšířit definici relace < na množině A = {a, b, c, d,..., z} { } takto: < a < b < c < z. Potom bude v S(A) platit hora milan horak jan. Uveďme si ještě několik pojmů, které jsou pro studium uspořádaných množin důležité. Definice. Nechť (A, ) je uspořádaná množina. Řekneme, že 1) prvek a je minimálním prvkem uspořádané množiny A, jestliže v A neexistuje žádný prvek x, x < a; 2) prvek a je maximálním prvkem uspořádané množiny A, jestliže v A neexistuje žádný prvek x, x > a; 3) prvek a je nejmenším prvkem uspořádané množiny A, jestliže je a x pro každý prvek x A; 4) prvek a je největším prvkem uspořádané množiny A, jestliže je x a pro každý prvek x A; 5) prvek a je pokrýván prvkem b (nebo, že prvek b pokrývá prvek a), jestliže je a < b a neexistuje prvek x A takový, že a < x a x < b. Nejmenší prvek uspořádané množiny budeme obvykle zančit symbolem 0 a největší prvek symbolem 1. Je zřejmé, že nejmenší prvek množiny je minimálním prvkem a největší prvek je maximálním prvkem. Samozřejmě existují uspořádané množiny, které nemají ani minimální ani maximální prvky, např. množina R všech reálných čísel. Na druhou stranu každá konečná uspořádaná množina má alespoň jeden maximální a alespoň jeden minimální prvek. Skutečnost, že prvkek a je pokrýván prvkem b budeme vyjadřovat symbolem a b. Relaci budeme nazývat pokrýváním. Uspořádané konečné množiny, a to zejména ty, které nemají moc prvků, si pro větší názornost můžeme zobrazovat v tzv. diagramech uspořádaných množin. Na těchto diagramech budeme obvykle prvky zobrazovat jako kolečka (dutá nebo plná) a dále budeme znázorňovat pouze relaci pokrytí a vždy platí, že prvek a je pokrýván prvkem b, právě tehdy, když je prvek b zobrazen nad prvkem a oba prvky jsou spojeny usečkou. Z tranzitivity relace uspořádání plyne, že x < y poznáme na diagramu tak, že prvek y je zobrazen nad prvkem x a prvky jsou spojeny čarou, která se skládá z jedné či více úseček. Na Obr. 1 jsou uvedeny příklady diagramů uspořádaných množin.

5 5 Obr. 1: Diagramy uspořádaných množin Svazy V této části si uvedeme základní informace o uspořádaných množinách, které mají další speciální vlastnosti a které budeme nazývat svazy. Nechť (A, ) je uspořádaná množina a M A podmnožina množiny A. Řekneme, že prvek c A je supremum podmnožiny M v uspořádané množině (A, ), jestliže pro všechny prvky m M je m c a prvek c je nejmenší ze všech prvků s touto vlastností, tj. jestliže pro nějaký prvek x A je m x pro všechny prvky m M, pak je c x. Duálně definujeme, že prvek c A je infimum podmnožiny M v uspořádané množině (A, ), jestliže pro všechny prvky m M je c m a prvek c je největnší ze všech prvků s touto vlastností, tj. jestliže pro nějaký prvek x A je x m pro všechny prvky m M, pak je x m. Skutečnost, že prvek m je supremum nebo infimum množiny M označujeme symbolem c = sup M resp. c = inf M. Nyní si již můžeme říci, které uspořádané množiny budem nazývat svazy. Definice. Řekneme, že neprázdná uspořádaná množina (L, ) je svaz, jestliže pro každé dva prvky a, b L existuje sup {a, b} a inf {a, b} v (L, ). Za podsvaz svazu (L, ) budeme považovat každou neprázdnou podmnožinu P množiny L, která má tu vlastnost, že s každými dvěma prvky obsahuje i jejich supremumu a infimum, tj. platí, že sup {a, b} P a inf {a, b} P pro každé a, b P. Poznámka. Lze poměrně velmi snadno ukázat, že pokud existuje supremum (nebo infimum) každé dvouprvkové podmnožiny, pake existuje supremum (nebo infimum) i pro každou konečnou podmnožinu. Důsledkem toho je, že každý konečný svaz má největší a nejmenší prvek. Je evidentní, že každý podsvaz P svazu (L, ) je svazem vyhledem ke stejné relaci uspořádání. Triviálními případy podsvazu jsou celý svaz P = L a jednoprvkové podsvazy P = {a} pro libovolný prvek a L. Dále je ihned zřejmé, že pokud jsou prvky a a b srovnatelné v uspořádané množině (A, ), pak je vždy existuje infimum i supremum pomnožiny {a, b}. Navíc platí, že každá dvě tvrzení ze tří tvrzení a b, inf {a, b} = a a sup {a, b} = b jsou navzájem ekvivalentní. Věta. Nechť je uspořádaná množina (L, ) svaz. Pro každé dva prvky a, b L označme inf {a, b} = a b a sup {a, b} = a b. Potom pro každé tři prvky a, b, c L platí: (1) a a = a, a a = a; (2) a b = b a, a b = b a; (3) a (b c) = (a b) c, a (b c) = (a b) c; (4) a (a b) = a, a (a b) = a. Naopak nechť jsou na množině L definovány dvě binární operace a, které splňují zákony uvedené v bodech (1), (2), (3) a (4). Na množině L definujme relaci vztahem a b, právě tehdy, když je a b = a. Takto definovaná relace je uspořádáním na L a (L, ) je svaz, ve kterém platí: inf {a, b} = a b a sup {a, b} = a b.

6 6 Poznámka. Binární operace se nazývá průsek, binární operace se nazývá spojení. Zákony uvedené v bodech (1), (2), (3) a (4) se postupně nazývají idempotentní, komutativní, asociativní a absorbční. Na Obr. 2 jsou uvedeny diagramy všech možných svazů na jednoprvkové, dvouprvkové, tříprvkové a čtyřprvkové množině (dva svazy). Obr. 2: Svazy na maximálně čtyřprvkové množině Je velmi snadné ukázat, že v každém svazu (L,, ) platí následující vztahy: a a b, a b a, a b a c d implikuje a c b d a a c b d, a b a c b implikuje a c b a a b a a c implikuje a b c, a (b c) (a b) (a c), (a b) (a c) (a (b c). V některých svazech platí i některé další identity či vztahy. Příkladem takových svazů jsou. tzv. distributivní svazy a komplementární svazy. Uveďme si definici a ukažme některé zajímavé vlastnosti. Definice. Řekneme, že svaz (L,, ) je distributivní, jestliže pro libovolné tři prvky a, b, c L platí: a (b c) = (a b) (a c) a (a b) (a c) = (a (b c). Poznámka. Identity, které musí splňovat distributivní svazy se nazývají distributivní zákony. Je možno ukázat (pokuste se o to) že platí li v nějakém svazu jeden z distributivních zákonů, pak v něm platí i druhý. jsou možné i jiné ekvivalentní definice. Ukažme si dvě vlastnosti distributivních svazů, které by mohly být považovány i definici distributivních svazů. Připomeňme, že podsvazem svazu (L,, ) se rozumí každá neprázdná podmnožina M L pro kterou platí: jsou li a, b M, pak i a b M a a b M. Je zřejmé, že v tomto případě je (M,, ) opět svaz. Věta. Následující tvrzení jsou pro svaz (L,, ) ekvivalentní: a) (L,, ) je distributivní svaz; b) pro každé tři prvky a, b, c L platí: je li a b = a c a a b = a c, pak je b = c; c) svaz (L,, ) neobsahuje jako podsvaz ani jeden ze svazů uvedených na Obr. 3. Obr. 3: Nedistributivní svazy

7 Nejmenší prvek svazu (pokud existuje) budeme značit 0 a největší prvek svazu (pokud existuje) budeme značit 1. Svaz (L,, ) s největším a nejmenším prvkem budeme dále obvykle označovat (L,,, 0, 1). Definice. Řekneme, že svaz (L,,, 0, 1) je komplementární, jestliže ke každému prvku a L existuje prvek a L takový, že je a a = 0 a a a = 1. Distributivní a komplementární svaz, který má alespoň dva prvky, budeme nazývat Booleovou algebrou. Poznámka. Zobrazení a a je unární operace na množině L a proto budeme svazy s největším a nejmenším prvkem obvykle značit (L,,, 0, 1, ). Je zřejmé, že 0 = 1, 1 = 0 a (a ) = a. Pokud je komplementární svaz distributivní (tedy Booleova algebra), platí v něm i tzv. de Morganovy zákony, tj. pro každé dva prvky a, b L je (a b) = a b a (a b) = a b. Poznámka. Jsou li L 1, L 2,..., L n svazy, pak jejich kartézský součin L 1 L 2 L n je opět svaz. Pro operace průsek a spojení v tomto svazu platí, že (a 1, a 2,..., a n ) (b 1, b 2,..., b n ) = (a 1 b 1, a 2 b 2,..., a n b n ), (a 1, a 2,..., a n ) (b 1, b 2,..., b n ) = (a 1 b 1, a 2 b 2,..., a n b n ). Pokud svazy L 1, L 2,..., L n mají nejmenší prvky 0 1, 0 2,... 0 n, případně největší prvky 1 1, 1 2,... 1 n. nebo jsou komplementární, potom také svaz L 1 L 2 L n má nejmenší prvek 0 = (0 1, 0 2,... 0 n ), případně největší prvek = (1 1, 1 2,... 1 n ). Pokud svazy L 1, L 2,..., L n jsou komplementární resp. distributivní, potom je i svaz L 1 L 2 L n komplementární resp. distributivní. Speciálně z toho plyne, že kartézský součin Booleových algeber je opět Booleova algebra. Příklady k procvičení 1) Jaké vlastnosti mají relace R a S na množině Z všech celých čísel definované vztahy x R y právě tehdy, je li x y = 2 a x S y právě tehdy, je li x y = 2? 2) Jaké vlastnosti mají relace R a S na množině Z definované vztahy x R y právě tehdy, je li x y {0, 2, 4,... } (tj. x y je sudé číslo) a x S y právě tehdy, je li x y = {0, 2, 4,... } (tj. x y je liché číslo? 3) Jaké vlastnosti mají relace R a S na množině Z Z definované vztahy (a, b) R (c, d) právě tehdy, když a c a b d a (a, b) S (c, d) právě tehdy, když a + b c + d? Jaký je mezi nimi vztah? 4) Na množině M = {(x, y); x Z, y Z, y 0} definujeme relaci R předpisem (m, n) R (p, q)právě tehdy, je li m q = n p. Jaké vlastnosti má a co popisuje tato relace? 5) Jaké vztahy platí mezi relacemi mod(3), mod(5) a mod(15)? 6) Určete průnik relací mod(6), mod(8) a mod(10)? 7) Na následujícím obrázku Obr. 4 jsou zobrazeny diagramy uspořádaných množin A, B, C a D. Které z těchto uspořádaných množin jsou svazy? Které ze svazů jsou distributivní a které komplementární? Výsledky 1) Relace R je pouze symetrická, relace S je symetrická a reflexivní. 2) Relace R je reflexivní, symetrická a tranzitivní (tj. je ekvivalence), relace S je pouze symetrická. 3) Relace R je uspořádání, relace S je reflexivní a tranzitivní. 7

8 8 A B C D Obr. 4: Uspořádané množiny A, B, C, D 4) Relace R je ekvivalence na množině M a (m, n) R (p, q) popisuje rovnost dvou racionálních čísel m n a p q. 5) mod(3) mod(5) = mod(15). 6) mod(6) mod(8) mod(10) = mod(60). 7) Uspořádané množiny A, C a D jsou svazy, B svaz není. Distributivní svazy jsou svazy A a C. Komplementární svaz je pouze svaz D.

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky. Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při

Více

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y. Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

PŘEDNÁŠKA 7 Kongruence svazů

PŘEDNÁŠKA 7 Kongruence svazů PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí

Více

Úlohy k procvičování textu o svazech

Úlohy k procvičování textu o svazech Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1

Více

Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky.

Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Relace. Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Definice. Mějme množiny A a B. Binární relace R z množiny A do množiny B je každá množina uspořádaných dvojic (a, b), kde

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška

Více

Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37

Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37 Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole

Více

průniku podmnožin, spojení je rovno sjednocení podmnožin a komplement je doplněk Obr. 5: Booleovy algebry

průniku podmnožin, spojení je rovno sjednocení podmnožin a komplement je doplněk Obr. 5: Booleovy algebry BOOLEOVY ALGEBRY Připomeňme si, že za Booleovu algebru považujeme každou algebru (B,,, 0, 1, ) s neprázdnou množinou B, binárními operacemi průsek, spojení, s prvky 0, 1 B a unární operací komplement,

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu. Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1

Více

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. 1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

Množiny, základní číselné množiny, množinové operace

Množiny, základní číselné množiny, množinové operace 2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás

Více

Princip rozšíření a operace s fuzzy čísly

Princip rozšíření a operace s fuzzy čísly Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic

Více

1 Základní pojmy. 1.1 Množiny

1 Základní pojmy. 1.1 Množiny 1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat

Více

Co je to univerzální algebra?

Co je to univerzální algebra? Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více

RELACE, OPERACE. Relace

RELACE, OPERACE. Relace RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška šestá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Olomouc

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry

Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry S Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry Michal Bulant Masarykova univerzita Fakulta informatiky 31. 3. 2008 O Uspořádané množiny Množinová a booleovská (Booleova) algebra

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry

Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry Michal Bulant Masarykova univerzita Fakulta informatiky 31. 3. 2008 O Uspořádané množiny Q Množinová a booleovská (Booleova) algebra

Více

Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0.

Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0. Kapitola 4 Booleovy algebry 4.1 Definice Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí x y = 1, x y = 0. Představu o

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Množina je nejdůležitější matematický pojem, na kterém stojí veškeré další matematické pojmy.

Množina je nejdůležitější matematický pojem, na kterém stojí veškeré další matematické pojmy. 1 Teorie množin Základní informace V této výukové jednotce se student seznámí se základními pojmy a algoritmy z teorie množin. Začneme základními operacemi s množinami, seznámíme se s pojmy jako kartézský

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací

Více

ÚVOD DO ARITMETIKY. Michal Botur

ÚVOD DO ARITMETIKY. Michal Botur ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice

Více

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S. 1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti

Více

Booleova algebra Luboš Štěpánek

Booleova algebra Luboš Štěpánek Booleova algebra Luboš Štěpánek Úvod Booleovaalgebra(čti búlova ),nazvanápodleirskéhomatematikaalogikageorge Boolea(1815 1864), je užitečná v mnoha matematických disciplínách a má velmi široké uplatnění

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Booleovy algebry. Irina Perfilieva. logo

Booleovy algebry. Irina Perfilieva. logo Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry

Více

2. Test 07/08 zimní semestr

2. Test 07/08 zimní semestr 2. Test 07/08 zimní semestr Příklad 1. Najděte tříprvkový poset (částečně uspořádanou množinu), která má právě dva maximální a právě dva minimální prvky. Řešení. Takový poset je až na izomorfismus jeden:

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám Algebra 2 slidy k přednáškám KMI/ALG2 Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. Vytvořeno za podpory projektu FRUP_2017_052: Tvorba a inovace výukových opor

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Základy logiky a teorie množin

Základy logiky a teorie množin Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu

Více

Matice. a m1 a m2... a mn

Matice. a m1 a m2... a mn Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích

Více

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice

Více

Fuzzy množiny, Fuzzy inference system. Libor Žák

Fuzzy množiny, Fuzzy inference system. Libor Žák Fuzzy množiny, Fuzzy inference system Proč právě fuzzy množiny V řadě případů jsou parametry, které vstupují a ovlivňují vlastnosti procesu, popsané pomocí přibližných nebo zjednodušených pojmů. Tedy

Více

2.4. Relace typu uspořádání

2.4. Relace typu uspořádání Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana 1 2.4. Relace typu uspořádání Definice 2.4.1: na množině X je /částečné a neostré/ uspořádání, jestliže je současně refl exivní, antisymetrická a tranzitivní.

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

1 Pravdivost formulí v interpretaci a daném ohodnocení

1 Pravdivost formulí v interpretaci a daném ohodnocení 1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří

Více

Ekvivalence. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5

Ekvivalence. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5 doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5 Evropský sociální fond.

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Relace. R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace

Relace. R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace Relace 1. Nechť A = {n N; n < 10}, B = {m N; m 12}, R = {[m, n] A B; m + 1 = n}, S = {[m, n] A B; m 2 = n}. Zapište relace R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace R R, S S,

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně

Více

Množiny. Množina je soubor objektů, o kterých můžeme rozhodnout, zda do množiny patří nebo ne. Tyto objekty nazýváme prvky.

Množiny. Množina je soubor objektů, o kterých můžeme rozhodnout, zda do množiny patří nebo ne. Tyto objekty nazýváme prvky. Množiny Množina je soubor objektů, o kterých můžeme rozhodnout, zda do množiny patří nebo ne. Tyto objekty nazýváme prvky. Množiny označujeme velkými písmeny např. A, B, N, R.. Množinu lze určit a) výčtem

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT 2 0 1 8 Obsah 1 Vektorové prostory 1 1 Vektorový prostor, podprostory........................ 1 2 Generování podprostor u............................

Více

Základy teorie množin

Základy teorie množin Základy teorie množin Teorie Výběr základních pojmů: Množina Podmnožina Prázdná množina Označení běžně používaných množin Množinová algebra (sjednocení, průnik, rozdíl) Doplněk množiny Potenční množina

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

3 Množiny, Relace a Funkce

3 Množiny, Relace a Funkce 3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Algebra - druhý díl. Lenka Zalabová. zima Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita

Algebra - druhý díl. Lenka Zalabová. zima Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita Algebra - druhý díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Permutace 2 Grupa permutací 3 Více o permutacích

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více