Kapitola 11: Lineární diferenciální rovnice 1/15

Rozměr: px
Začít zobrazení ze stránky:

Download "Kapitola 11: Lineární diferenciální rovnice 1/15"

Transkript

1 Kapitola 11: Lineární diferenciální rovnice 1/15

2 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y + a 1 (x)y + a 2 (x)y = b(x), a 0 (x), a 1 (x), a 2 (x), b(x) C(I) jsou spojité fce a 0 (x) 0 pro všechna x I Homogenní LDR (HLDR)... b(x) = 0 pro všechna x I Nehomogenní LDR (NLDR)... existuje x I takové, že b(x) 0. Funkce a 0 (x), a 1 (x), a 2 (x) nazýváme koeficienty LDR. LDR s konstantními koeficienty... a i (x) nezávisí na x (jsou to čísla) Např. y xy + (cos x)y = 0... HLDR 2. řádu s nekonstantními koeficienty 2y 3y + 5y = x 3... NLDR 2. řádu s konstantními koeficienty 2/15

3 Věta o existenci a jednoznačnosti Proč "lineární"? L(y) = a 0 (x)y + a 1 (x)y + a 2 (x)y... je lineární zobrazení. Při řešení y + xy = cos x, hledáme všechny funkce y C 2 (R), které se při lineárním zobrazení L zobrazují na funkci b(x) = cos x. Při řešení y + xy = 0, hledáme hledáme jádro N (L). Věta: Necht a 0 (x), a 1 (x), a 2 (x), b(x) C(I) a a 0 (x) 0 pro x I. Pro libovolné x 0 I a y 0, y 1 R existuje právě jedno řešení y C n (I) diferenciální rovnice a 0 (x)y + a 1 (x)y + a 2 (x)y = b(x), které vyhovuje počátečním podmínkám y(x 0 ) = y 0 a y (x 0 ) = y 1. Např. xy xy + x 3 y = ln x y(1) = 2, y (1) = 1 } má právě jedno řešení Pozn. Počáteční podmínky vždy v jednom x 0. 3/15

4 Řešení LDR 1. řádu - opakování z MI 4/15 a 0 (x)y + a 1 (x)y = b(x) L(y) = a 0 (x)y + a 1 (x)y je lineární zobrazení Využijeme y = y H + y P a postupujeme ve 2 krocích: 1 Řešení HLDR 1. řádu: L(y) = 0 = hledání jádra L umíme řešit např. metodou separace proměnných (nebo vzorec) obecné řešení je tvaru: y H (x) = C 1 y 1 (x) = C ϕ(x). (tj. y H je lineární podprostor dimenze 1) 2 Řešení NLDR 1. řádu L(y) = b(x) y P hledáme metodou variace konstanty y P = C(x) ϕ(x) 3 obecné řešení NLDR y = y H + y P

5 Homogenní LDR 2. řádu a 0 (x)y + a 1 (x)y + a 2 (x)y = 0 V H = množina všech řešeni této HLDR. Protože L(y) = a 0 (x)y + a 1 (x)y + a 2 (x)y je lineární zobrazení V H = {y C 2 (I); L(y) = 0} = N (L) = jádro L Věta: Množina V H je lineární podprostor C 2 (I) dimenze 2. Definice: Bazi prostoru V H názýváme fundamentální systém Tedy: Pro vyřešení HLDR 2.řádu je třeba najít 2 LN řešení {f 1 (x), f 2 (x)}, tzv. fundamentální systém potom obecné řešení je tvaru y H (x) = C 1 f 1 (x) + C 2 f 2 (x). Pozn. Pro HLDR n-tého řádu je V H lineární podprostor C n (I) dimenze n. y H (x) = C 1 f 1 (x) + C 2 f 2 (x) + + C n f n (x). 5/15

6 Postup řešení LDR 2. řádu Věta: Obecné řešení NLDR 2. řádu je ve tvaru a 0 (x) y (x) + a 1 (x) y (x) + a 2 (x) y(x) = b(x), y = y H + y p kde y H jsou všechna řešení příslušné HLDR a y p je jedno libovolné partikulární řešení NLDR. 1. krok Nalezneme všechna řešení y H příslušné HLDR (obecně umíme jen pro LDR s konst. koeficienty) a 0 y (x) + a 1 y (x) + a 2 y(x) = 0 2. krok Nalezneme 1 libovolné řešení y p rovnice a 0 y (x) + a 1 y (x) + a 2 y(x) = b(x) 2 základní metody METODA VARIACE KONSTANT METODA ODHADU 3. krok všechna řešení... y = y H + y p (4. krok pokud máme počáteční podmínky, určíme konstanty v y H ) 6/15

7 7/15 1. krok - Obecné řešení přiřazené HLDR s konst. koeficienty a 0 y (x) + a 1 y (x) + a 2 y(x) = 0 charakteristická rovnice: a 2 λ 2 + a 1 λ + a 0 = 0 Najdeme kořeny λ 1,2 této kvadratické rovnice. Mohou nastat 3 případy: λ 1 λ 2 R fundamentální systém = {e λ 1x, e λ 2x } y H (x) = C 1 e λ 1x + C 2 e λ 2x λ 1 = λ 2 = λ R fund. systém = {e λx, x e λx } y H (x) = C 1 e λx + C 2 x e λx λ 1,2 = a ± i b C fund. systém = {e ax cos(bx), e ax sin(bx)} y H (x) = C 1 e ax cos(bx) + C 2 e ax sin(bx), (ve všech případech x R, C 1, C 2 R)

8 8/15 Vsuvka - komplexní funkce reálné proměnné Připomenutí: C komplexní čísla dvojice reálných čísel (a, b) z = a + i b. Navíc platí i 2 = 1. a... reálná část z b... imaginární z Definice: f : R C je komplexní funkce reálné proměnné. f (x) = u(x) + i v(x) (komplexní funkce je vlastně dvojice obyč. (reálných) funkcí) Pro z C definujeme e z takto: e z = e a+i b = e a e i b = e a (cos b + i sin b) = e a cos b + i e a sin b Věta: Je-li f (x) = u(x) + i v(x) řešením HLDR, potom i reálné funkce u(x) a v(x) jsou řešením této DR. (a + i b)x Specielně: Je-li e řešením HLDR, potom i reálné funkce e ax cos bx a e ax sin bx jsou řešením této HLDR, navíc jsou LN ( tvoří fundamentální systém).

9 2. krok - hledání y P - Metoda variace konstant a 0 (x)y + a 1 (x)y + a 2 (x)y = b(x) Je-li y H = C 1 f 1 (x) + C 2 f 2 (x) obecné řešení přidružené HLDR, pak partikulární řešení y P hledáme ve tvaru: y p (x) = c 1 (x) f 1 (x) + c 2 (x) f 2 (x) Hledáme funkce c 1 (x) a c 2 (x) splňující rovnice: c 1(x) f 1 (x) + c 2(x) f 2 (x) = 0 c 1(x) f 1(x) + c 2(x) f 2(x) = b(x) a 0 (x), (Pozn. Matice soustavy je Wronského matice fund. systému) Potom c 1 (x) = c 1(x)dx a c 2 (x) = c 2(x)dx. Dostáváme: y p (x) = c 1 (x) f 1 (x) + c 2 (x) f 2 (x) Pozn. Variaci konstant můžeme použít i pro LDR 2. řádu s nekonstantními koeficienty. 9/15

10 2. krok - hledání y P - Metoda odhadu - pro LDR 2.řádu s konst. koeficienty a speciální pravou stranou, tj. a 0 y + a 1 y + a 2 y = e α x (P(x) sin(β x) + Q(x) cos(β x)) (P(x), Q(x) jsou polynomy, α, β, a 0, a 1, a 2 R jsou konstanty.) Partikulární řešení y p lze vždy najít ve tvaru: y p (x) = x k e α x (R(x) sin(β x) + S(x) cos(β x)), kde k {0, 1, 2} je násobnost α + iβ jakožto kořene char. rovnice, tj. k=0 α + iβ není kořen charakteristické rovnice k=1 α + iβ je jednonásobný kořen char. rovnice k=2 α + iβ je dvojnásobný kořen char. rovnice R(x), S(x) - polynomy stupně max{st. P(x), st. Q(x)} Odhadneme tedy "přibližný tvar" y p. Jednotlivé konstanty určíme tak, aby y p bylo řešením NLDR. 10/15

11 11/15 Metoda modifikace odhadu Věta: Je-li y 1 (x) řešením LDR a 0 y + a 1 y + a 2 y = b 1 (x) a y 2 (x) řešením LDR a 0 y + a 1 y + a 2 y = b 2 (x), potom y 1 (x) + y 2 (x) je řešením a 0 y + a 1 y + a 2 y = b 1 (x) + b 2 (x). Příklad: y y = 2e x x 2 Řešení: y y = 2e x y 1 (x) = C 1 e x + C 2 e x + xe x y y = x 2 y 2 (x) = C 1 e x + C 2 e x + x y(x) = C 1 e x + C 2 e x + xe x + x 2 + 2, x R.

12 Okrajové úlohy 12/15 Uvažujme obecnou LDR 2. řádu a 0 (x)y + a 1 (x)y + a 2 (x)y = b(x), x a, b Počáteční podmínky Okrajové podmínky y(a) = y 0, y (a) = y 1 y(a) = y 0, y(b) = y 1 Platí věta o existenci a jednoznačnosti. existuje právě jedno řešení splňující počáteční podmínky Neplatí věta o existenci a jednoznačnosti. existuje jediné řešení neexistuje řešení existuje nekonečně mnoho řešení splňující okrajové podmínky.

13 Metoda snížení řádu Základní myšlenka: Pokud se v DR nevyskytuje y, lze provést substituci z = y, tím získáme DR nižšího řádu. Pokud tuto DR umíme vyřešit, získáme řešení z(x) jehož integrací dostame řešení y(x) původní DR. Příklad: xy + y = 3x 2, y(1) = 1, y (1) = 3 Řešení: substituce z = y xz + z = 3x 2 Umíme řešit z(x) = x C 1 x y(x) = z(x)dx = x 2 + C 1 dx = x C 1 ln x + C 2 y(1) = 1, y (1) = z(1) = 3 C 1 = 2, C 2 = 2 3. Řešením je funkce y(x) = x ln x + 2 3, x (0, ). Pozn. 1 Fund. systém původní HLDR je f 1 (x) = ln x, f 2 (x) = 1. Pozn. 2 Nevyskytuje-li se v DR y ani y, lze provést substituci z = y,... 13/15

14 Lineární diferenciální rovnice n- tého řádu Definice: Lineární diferenciální rovnice n-tého řádu je rovnice tvaru a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x), kde: y C n (I) je hledaná funkce a 0 (x), a 1 (x),..., a n (x), b(x) C(I) jsou spojité fce a 0 (x) 0 pro všechna x I Věta: (o existenci a jednoznačnosti) Necht a 0 (x), a 1 (x),..., a n (x), b(x) C(I) a a 0 (x) 0 pro x I. Pro libovolné x 0 I a y 0, y 1, y 2,..., y n 1 R existuje právě jedno řešení y C n (I) diferenciální rovnice a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x), které vyhovuje počátečním podmínkám y(x 0 ) = y 0, y (x 0 ) = y 1, y (x 0 ) = y 2,..., y n 1 (x 0 ) = y n 1. Pozn. Počáteční podmínky vždy v jednom x 0. 14/15

15 15/15 Řešení lineárních DR vyšších řádů Uvažme NLDR n-tého řádu a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (1) a příslušnou HLDR a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = 0 (2) Pro LDR n-tého řádu platí analogické věty jako pro LDR 1. a 2. řádu: Věta: Obecné řešení NLDR (1) je ve tvaru y = y H + y p kde y H jsou všechna řešení příslušné HLDR (2) a y p je jedno libovolné partikulární řešení NLDR (1). Věta: Pro HLDR n-tého řádu je V H lineární podprostor C n (I) dimenze n, tj. y H (x) = C 1 f 1 (x) + C 2 f 2 (x) + + C n f n (x).

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Obyčejné diferenciální rovnice

Obyčejné diferenciální rovnice 1 Obyčejné diferenciální rovnice Příklad 0.1 (Motivační). Rychlost chladnutí hmotného bodu je přímo úměrná rozdílu jeho teploty minus teploty okolí. Předpokládejme teplotu bodu 30 o C v čase t = 0 a čase

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

12 Obyčejné diferenciální rovnice a jejich soustavy

12 Obyčejné diferenciální rovnice a jejich soustavy 12 Obyčejné diferenciální rovnice a jejich soustavy 121 Úvod - opakování Opakování z 1 ročníku (z kapitoly 5) Definice 121 Rovnice se separovanými proměnnými je rovnice tvaru Návod k řešení: Pokud g(c)

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

9.3. Úplná lineární rovnice s konstantními koeficienty

9.3. Úplná lineární rovnice s konstantními koeficienty Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y = Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

6. Lineární ODR n-tého řádu

6. Lineární ODR n-tého řádu 6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Kapitola 7: Integrál.

Kapitola 7: Integrál. Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,

Více

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

Obyčejné diferenciální rovnice

Obyčejné diferenciální rovnice Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a . Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz www.mendelu.cz/user/marik c Robert Mařík, 2009 Obsah 1 Diferenciální rovnice úvod

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Leden 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193

Více

7. Soustavy ODR1 Studijní text. 7. Soustavy ODR1. A. Základní poznatky o soustavách ODR1

7. Soustavy ODR1 Studijní text. 7. Soustavy ODR1. A. Základní poznatky o soustavách ODR1 7 Soustavy ODR1 A Základní poznatky o soustavách ODR1 V inženýrské praxi se se soustavami diferenciálních rovnic setkáváme především v úlohách souvisejících s mechanikou Příkladem může být úloha popsat

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení)

A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení) A0B0LAA Lineární algebra a aplikace příklady na cvičení- řešení Martin Hadrava martin@hadrava.eu. ledna 0.týdenod9.9. Řešení soustav lineárních rovnic Gaussovou eliminační metodou diskuse počtu řešení..

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Principy indukce a rekurentní rovnice

Principy indukce a rekurentní rovnice Principy indukce a rekurentní rovnice Jiří Velebil: X01DML 22. října 2010: Indukce 1/15 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

Obecné lineární problémy

Obecné lineární problémy Obecné lineární problémy Variace konstant V kapitolách o soustavách lineárních rovnic a o lineárních rovnicích n-tého řádu jsme se naučili řešit rovnice (soustavy) s nulovou pravou stranou, resp. s pravou

Více

16 Obyčejné diferenciální rovnice a jejich soustavy

16 Obyčejné diferenciální rovnice a jejich soustavy M Rokyta, MFF UK: Aplikovaná matematika III kap 16: Obyčejné diferenciální rovnice a jejich soustavy 13 16 Obyčejné diferenciální rovnice a jejich soustavy 161 Úvod - opakování Opakování z 1 ročníku (z

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

8. Okrajový problém pro LODR2

8. Okrajový problém pro LODR2 8. Okrajový problém pro LODR2 A. Základní poznatky o soustavách ODR1 V kapitole 6 jsme zavedli pojem lineární diferenciální rovnice n-tého řádu, která je pro n = 2 tvaru A 2 (x)y + A 1 (x)y + A 0 (x)y

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1 ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což

Více

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský Užití nekonečných řad při řešení obyčejných diferenciálních rovnic Michal Ostřanský Bakalářská práce 2017 ABSTRAKT Cílem bakalářské práce je ukázat možnosti použití nekonečných řad při řešení obyčejných

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním textu Matematika.

Více

rovnice Matematická analýza 3 (verze 10. června 2015)

rovnice Matematická analýza 3 (verze 10. června 2015) Diferenciální rovnice součást předmětu Matematická analýza 3 Pavel Řehák (verze 10. června 2015) 2 Pár slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza 3 (partie týkající se diferenciálních

Více

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

DIFERENCIÁLNÍ ROVNICE. Jana Řezníčková. Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně

DIFERENCIÁLNÍ ROVNICE. Jana Řezníčková. Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně DIFERENCIÁLNÍ ROVNICE Jana Řezníčková Ústav matematiky Fakulta aplikované informatiky Univerzita Tomáše Bati ve Zlíně Zlín, 2015 2 DIFERENCIÁLNÍ ROVNICE Jana Řezníčková Ústav matematiky FAI UTB ve Zlíně

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Matematická analýza 2 1

Matematická analýza 2 1 Matematická analýza 2 Obsah Diferenciální rovnice 3. Motivace....................... 3.2 Diferenciální rovnice. řádu............ 3.3 Metody řešení diferenciálních rovnic. řádu... 7.3. Ortogonální systémy

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

0.1 Obyčejné diferenciální rovnice prvního řádu

0.1 Obyčejné diferenciální rovnice prvního řádu 0.1 Obyčejné diferenciální rovnice prvního řádu 1 0.1 Obyčejné diferenciální rovnice prvního řádu Obyčejná diferenciální rovnice je rovnice, ve které se vyskytují derivace nebo diferenciály neznámé funkce

Více

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok. DMA Přednáška Rekurentní rovnice Rekurentní rovnice či rekurzivní rovnice pro posloupnost {a n } je vztah a n+1 = G(a n, a n 1,..., a n m ), n n 0 + m, kde G je nějaká funkce m + 1 proměnných. Jejím řešením

Více

Požadavky ke zkoušce

Požadavky ke zkoušce Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Řešené úlohy z Úvodu do algebry 1

Řešené úlohy z Úvodu do algebry 1 Řešené úlohy z Úvodu do algebry Veronika Sobotíková katedra matematiky FEL ČVUT Vzhledem k tomu, že se ze strany studentů často setkávám s nepochopením požadavku zdůvodnit jednotlivé kroky postupu řešení,

Více

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová ÚSTAV MATEMATIKY

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh RNDr. Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním textu Matematika. Navazuje

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více