VIII. Primitivní funkce a Riemannův integrál

Rozměr: px
Začít zobrazení ze stránky:

Download "VIII. Primitivní funkce a Riemannův integrál"

Transkript

1 VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3. Primitivní funkce x c f(t) dt pro Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu I, jestliže pro kždé x I existuje F (x) pltí F (x) = f(x). Vět 7 (jednoznčnost primitivní funkce). Nechť F G jsou primitivní funkce k funkci f n otevřeném intervlu I. Pk existuje c R tk, že F (x) = G(x) + c pro kždé x I. Poznámk. nožinu všech primitivních funkcí k funkci f znčíme symbolem f(x) dx. Skutečnost, že F je primitivní funkcí k f n I zpisujeme f(x) dx c = F (x), x I. Vět 8 (o existenci primitivní funkce). Nechť f je spojitá funkce n neprázdném otevřeném intervlu I. Pk f má n I primitivní funkci. Vět 9 (linerit neurčitého integrálu). Nechť funkce f má n otevřeném intervlu I primitivní funkci F, funkce g má n I primitivní funkci G α, β R. Potom funkce αf + βg je primitivní funkcí k αf + βg n I. Primitivní funkce k některým důležitým funkcím x n dx = c xn+ n R pro n N {0}; n + n (, 0) n (0, ) pro n Z, n <, x α dx = c xα+ n (0, + ) pro α R \ { }, α + x dx = c log x n (0, + ), x dx = c log( x) n (, 0), e x dx = c e x n R, sin x dx = c cos x n R, cos x dx = c sin x n R, cos 2 x dx = c tg x n kždém z intervlů ( π 2 + kπ, π 2 + kπ), k Z,

2 sin 2 x dx = c cotg x n kždém z intervlů (kπ, (k + )π), k Z, + x 2 dx = c rctg x n R, dx = c rcsin x n (, ), x 2 dx = c rccos x n (, ). x 2 Vět 0 (o substituci). (i) Nechť F je primitivní funkce k f n (, b). Nechť je ϕ funkce definovná n (α, β) s hodnotmi v intervlu (, b), která má v kždém bodě t (α, β) vlstní derivci. Pk f ( ϕ(t) ) ϕ (t) dt = c F ( ϕ(t) ) n (α, β). (ii) Nechť funkce ϕ má v kždém bodě intervlu (α, β) vlstní derivci, která je buď všude kldná, nebo všude záporná, ϕ ( (α, β) ) = (, b). Nechť funkce f je definovná n intervlu (, b) pltí f ( ϕ(t) ) ϕ (t) dt c = G(t) n (α, β). Pk f(x) dx c = G ( ϕ (x) ) n (, b). Vět (integrce per prtes). Nechť I je neprázdný otevřený intervl, funkce f g jsou spojité n I, F je primitivní funkce k f n I G je primitivní funkce ke g n I. Pk pltí g(x)f (x) dx = G(x)F (x) G(x)f(x) dx n I. Integrce rcionálních funkcí Definice. Rcionální funkcí budeme rozumět podíl dvou polynomů, kde polynom ve jmenovteli není identicky roven nule. Vět ( zákldní vět lgebry ). Nechť n N, 0,..., n C, n 0. Pk rovnice má lespoň jedno řešení z C. n z n + n z n + + z + 0 = 0 Lemm 2 (o dělení polynomů). Nechť P Q jsou dv polynomy (s komplexními koeficienty), přičemž polynom Q není identicky roven nule. Pk existují jednoznčně určené polynomy R Z splňující: Polynom Z je nulový nebo má stupeň menší než stupeň Q. P (x) = R(x)Q(x) + Z(x) pro všechn x C. Pokud mjí P Q reálné koeficienty, mjí i R Z reálné koeficienty. Důsledek. Je-li P polynom λ C je jeho kořen (tj. P (λ) = 0), pk existuje polynom R, pro který pltí P (x) = (x λ)r(x) pro x C. Vět 3 (o rozkldu n kořenové činitele). Nechť P (x) = n x n + + x + 0 je polynom stupně n. Pk existují čísl x,..., x n C tková, že P (x) = n (x x ) (x x n ), x R. 2

3 Definice. Nechť P je polynom, λ C k N. Řekneme, že λ je kořen násobnosti k polynomu P, jestliže existuje polynom R, který splňuje R(λ) 0 P (x) = (x λ) k R(x) pro x C. (Tj. násobnost kořene λ je rovn počtu výskytů čísl λ v n-tici x, x 2,..., x n z věty??.) Vět 4 (o kořenech polynomu s reálnými koeficienty). Nechť P je polynom s reálnými koeficienty z C je kořen P násobnosti k N. Pk i komplexně sdružené číslo z je kořenem P násobnosti k. Vět 5 (o rozkldu polynomu s reálnými koeficienty). Nechť P (x) = n x n + + x + 0 je polynom stupně n s reálnými koeficienty. Pk existují reálná čísl x,..., x k, α,..., α l, β,..., β l přirozená čísl p,..., p k, q,..., q l tková, že P (x) = n (x x ) p (x x k ) p k (x 2 + α x + β ) q (x 2 + α l x + β l ) q l, žádné dv z mnohočlenů x x, x x 2,..., x x k, x 2 + α x + β,..., x 2 + α l x + β l nemjí společný kořen, mnohočleny x 2 + α x + β,..., x 2 + α l x + β l nemjí žádný reálný kořen. Vět 6 (o rozkldu n prciální zlomky). Nechť P, Q jsou polynomy s reálnými koeficienty tkové, že stupeň P je ostře menší než stupeň Q, Q(x) = n (x x ) p (x x k ) p k (x 2 + α x + β ) q (x 2 + α l x + β l ) q l, n, x,..., x k, α,..., α l, β,..., β l R, n 0, p,..., p k, q,..., q l N, žádné dv z mnohočlenů x x, x x 2,..., x x k, x 2 + α x + β,..., x 2 + α l x + β l nemjí společný kořen, mnohočleny x 2 + α x + β,..., x 2 + α l x + β l nemjí žádný reálný kořen. Pk existují jednoznčně určená reálná čísl,..., p,..., k,..., k p k, B, C,..., Bq, Cq,..., B, l C, l..., Bq l l, Cq l l tková, že pltí P (x) Q(x) = (x x ) + + p (x x ) p + + k (x x k ) + + k p k (x x k ) p k + + B x + C (x 2 + α x + β ) + + B q x + C q (x 2 + α x + β ) q + Bx l + C l (x 2 + α l x + β l ) + + Bq l l x + Cq l l (x 2 + α l x + β l ) q. l VIII.4. Dodtky k Riemnnovu integrálu Definice. Nechť f je spojitá funkce n (, b), < b + nechť c (, b). Nevlstním Riemnnovým integrálem od do b z funkce f rozumíme lim c α + α pokud limity existují jejich součet má smysl. f(x) dx + lim β b β c f(x) dx, Vět 7 (Newtonův vzorec). Nechť f je spojitá n intervlu (, b), < b, nechť F je primitivní funkce k f n (, b).. Integrál b f(x) dx existuje, právě když existují limity lim x + F (x), lim x b F (x) jejich rozdíl má smysl. V tomto přípdě pltí b f(x) dx = lim F (x) lim F (x). () x b x + 3

4 2. Pokud, b R f je spojitá n (omezeném!) uzvřeném intervlu, b, pk existují vlstní limity lim x + F (x), lim x b F (x) pltí (??). Důsledek 8 (linerit Riemnnov Integrálu). Nechť f, g jsou spojité n intervlu (, b), < b + mjí nevlstní Riemnnovy integrály n tomto intervlu. Nechť α, β R. Pk pltí b pokud má výrz n prvé strně smysl. b αf(x) + βg(x) dx = α VIII.5. Vícerozměrný Riemnnův integrál Definice. Řekneme, že R n je buňk, jestliže b f(x) dx + β =, b 2, b 2 n, b n, přičemž < i < b i < +, i =,..., n. Objem buňky budeme znčit symbolem vol definujeme jej jko vol = n (b i i ). i= g(x) dx, Definice. Nechť I =, b, < b. Řekneme, že posloupnost intervlů { x j, x j } k j= je dělením intervlu I, jestliže = x 0 < x < < x k = b. Nechť = I I 2 I n R n je buňk. Řekneme, že systém D složený z buněk je dělením buňky, jestliže D = {J J n ; J D,..., J n D n }, kde D j je dělením intervlu I j, j =,..., n. Definice. Nechť je buňk D, D 0 jsou dvě dělení buňky. Řekneme, že dělení D je zjemněním dělení D 0, jestliže kždá buňk dělení D je obsžen v nějké buňce dělení D 0. Normou dělení D rozumíme číslo ν(d) = mx { sup ρ(x, y)}. D D x,y D Integrce funkce přes buňku Definice. Nechť R n je buňk f je funkce definovná lespoň n, kde je omezená. Oznčme S(f, D) = sup f vol D, D D D S(f, D) = inf f vol D, D D D f = inf{s(f, D); D je dělení }, f = sup{s(f, D); D je dělení }. Definice. V přípdě, že f = f, definujeme zobecněný Riemnnův integrál funkce f přes buňku jko f = f. Někdy používáme tké symbol f(x) dx, kde je vyznčen proměnná funkce f. Poznámk. Pokud D, D 2 jsou dvě dělení buňky D je dělení buňky zjemňující D i D 2, pk Odtud lze sndno odvodit f f. S(f, D ) S(f, D) S(f, D) S(f, D 2 ). 4

5 Lemm 9 (ekvivlentní definice vícerozměrného integrálu). Nechť f je funkce omezená n buňce R n. () f = I R právě tehdy, když ke kždému ε R, ε > 0 existuje dělení D buňky tkové, že I ε < S(f, D) S(f, D) < I + ε. (b) Funkce f má n buňce zobecněný Riemnnův integrál právě tehdy, když ke kždému ε R, ε > 0 existuje dělení D buňky tkové, že S(f, D) S(f, D) < ε. Tvrzení 20 (integrál přes rozdělenou buňku). Nechť f je funkce omezená n buňce R n nechť D je dělení buňky. Jestliže pro kždé D D existuje D f, pk existuje i f pltí f = f. D D Důsledek 2. Nechť, B R n jsou buňky, B. Nechť f je funkce definovná lespoň n B, pro kterou pltí f(x) = 0 pokud x B \. Potom jestliže existuje f, pk existuje i f ob integrály B se rovnjí. Integrce funkce přes množinu Definice. Nechť R n f je funkce n proměnných, která je definován lespoň n je n omezená. Definujme funkci f : R n R tkto: { f(x) x, f(x) = 0 x R n \. D Zobecněný Riemnnův integrál f definujeme jko f = lim r + r,r n f, pokud uvedená limit existuje. (Především tedy musí existovt r,r n f pro všechn r (0, + ).) Pokud integrál funkce f přes množinu R n existuje přitom je konečný, pk říkáme, že f konverguje. Pokud je roven + nebo, pk říkáme, že diverguje. áme pk následující schém: reálnému číslu, tj. konverguje; existuje je roven +, tj. diverguje; f, tj. diverguje; neexistuje. Vět 22 (linerit vícerozměrného integrálu). Nechť R n, α R \ {0} f g jsou funkce n proměnných tkové, že integrály f g existují. Potom (i) (f + g) existuje pltí (f + g) = pokud má výrz n prvé strně rovnosti smysl. f + g, (ii) αf existuje pltí αf = α f. 5

6 Vět 23 (integrál přes sjednocení množin). Nechť, N R n, N = f je funkce n proměnných tková, že integrály f N f existují. Potom existuje i integrál N f pltí N pokud má výrz n prvé strně rovnosti smysl. f = f + Vět 24 (integrál uspořádání). Nechť R n f g jsou funkce n proměnných tkové, že integrály f g existují. (i) Je-li f 0, potom i f 0. (ii) Je-li f g, potom i f g. N f, (iii) f existuje pltí f f. Vět 25 (o konvergenci existenci integrálu). (i) Nechť K R n je omezená konvexní množin f je omezená funkce n K, která je spojitá ve všech bodech K (vzhledem ke K) vyjm nejvýše konečně mnoh bodů z K. Potom K f konverguje. (ii) Nechť K R n je konvexní množin f je omezená nezáporná funkce n K, která je spojitá ve všech bodech K (vzhledem ke K) vyjm nejvýše konečně mnoh bodů z K. Potom K f existuje. Vět 26 (Fubiniov vět). (i) Nechť R m 2 R n. Předpokládejme dále, že množiny 2 jsou buňky. Nechť f je funkce definovná lespoň n 2 nechť existuje 2 f. Pokud pro kždé x existuje F (x) = 2 f(x, y) dy R, potom pltí f = 2 F (x) dx. (ii) Nechť f : R m R n R je nezáporná funkce nechť existuje R m R n f. Pokud pro kždé x R m existuje F (x) = R n f(x, y) dy R pokud existuje R m F (x) dx, pk pltí f = R m R n R m F (x) dx. 6

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

5.5 Elementární funkce

5.5 Elementární funkce 5.5 Elementární funkce Lemm 5.20. Necht x R. Potom existuje kldné C R (závisející n x) tkové, že pro kždé n N h ( 1, 1) pltí (x + h) n x n nhx n 1 h 2 C n. Definice. Exponenciální funkci exp definujme

Více

Integrál a jeho aplikace Tomáš Matoušek

Integrál a jeho aplikace Tomáš Matoušek Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Kapitola 7: Integrál.

Kapitola 7: Integrál. Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1 9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump

Více

Kapitola 1. Taylorův polynom

Kapitola 1. Taylorův polynom Kpitol Tylorův polynom Definice. Budeme psát f = o(g) v R, je-li lim x ( f )(x) =, f = O(g) g v R, je-li ( f ) omezená n nějkém U (). g Příkld. lim x (x + x + 3) 5 (x 5 x 3 + 7x 9) = lim x + o(x ) x x

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

2. Pokud nedojde k nejasnostem, budeme horní a dolní součty značit pouze

2. Pokud nedojde k nejasnostem, budeme horní a dolní součty značit pouze 8. Určitý integrál 8.1. Newtonův integrál Definice 8.1 Buďte,b R. Řekneme,žeNewtonůvintegrálzfunkce fnintervlu(,b) existuje(znčímejej(n) f(x)dx),jestliže 1.existuje primitivní funkce F k f n intervlu(,

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

2.3 Aplikace v geometrii a fyzice Posloupnosti a řady funkcí Posloupnosti funkcí... 17

2.3 Aplikace v geometrii a fyzice Posloupnosti a řady funkcí Posloupnosti funkcí... 17 Obsh Derivce Integrály 6. Neurčité integrály.................. 6. Určité integrály....................3 Aplikce v geometrii fyzice............ 6 3 Posloupnosti řdy funkcí 7 3. Posloupnosti funkcí.................

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2.

1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. 1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. Množinu komplexních čísel znčíme C. N množině C definujeme operce sčítání + jko v R 2 násobení. předpisem (x, y).(u,

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

Limity, derivace a integrály Tomáš Bárta, Radek Erban

Limity, derivace a integrály Tomáš Bárta, Radek Erban Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

Pokud tato primitivní funkce platí na více intervalech, zapisujeme to najednou ve tvaru

Pokud tato primitivní funkce platí na více intervalech, zapisujeme to najednou ve tvaru Definice tvrzení funce(integrál Nechť f je funce n intervlu I. Řeneme,žefunce Fjeprimitivnífuncefn I,jestližeje Fspojitán I,diferencovtelnánvnitřu I O F = fn I O. Nechť Fjeprimitivnífuncefnintervlu I.

Více

je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.

je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f. MATEMATICKÁ ANALÝZA INTEGRÁLNÍ POČET PŘEDNÁŠEJÍCÍ ALEŠ NEKVINDA. Přednášk Oznčme R = R {, } jko v minulém semestru. V tomto semestru se budeme zbývt opčným úkonem k derivování. Primitivní funkce. Definice.

Více

Primitivní funkce. Definice a vlastnosti primitivní funkce

Primitivní funkce. Definice a vlastnosti primitivní funkce Obsh PŘEDMLUVA OBSAH 5 I. PRIMITIVNÍ FUNKCE 7 Definice vlstnosti primitivní funkce............ 7 Metody výpočtu primitivních funkcí............. Rcionální funkce................... 7 Ircionální funkce...................

Více

(5) Primitivní funkce

(5) Primitivní funkce (5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu MATEMATIKA I. prof. RNDr. Gejz Dohnl, CSc. IV. ákldy integrálního počtu 1 Mtemtik I. I. Lineární lgebr II. ákldy mtemtické nlýzy III. Diferenciální počet IV. Integrální počet 2 Mtemtik I. IV. Integrální

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

f dx S(f, E) M(b a), kde D a E jsou

f dx S(f, E) M(b a), kde D a E jsou Přehled probrné látky z MAII, LS 2004/05 1. přednášk 21.2.2005. Opkování látky o primitivních funkcích ze závěru zimního semestru (23.-25. přednášk). Rozkld rcionální funkce n prciální zlomky. Popis hledání

Více

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y) . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných

Více

17 Křivky v rovině a prostoru

17 Křivky v rovině a prostoru 17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

12.1 Primitivní funkce

12.1 Primitivní funkce Integrání počet. Primitivní funkce Již jsme definovli pojem derivce funkce, k funkci f(x) jsme hledli její derivci f (x). Nyní chceme ukázt opčný postup, tzn. k funkci f (x) njít funkci f(x). Přesněji,

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2

Více

Učební text k přednášce Matematická analýza II (MAI055)

Učební text k přednášce Matematická analýza II (MAI055) Učební text k přednášce Mtemtická nlýz II (MAI055) Mrtin Klzr 20. červn 2007 Přednášk pokrývá v letním semestru následující látku:. Riemnnův integrál. 2. Posloupnosti řdy funkcí, mocninné řdy Fourierovy

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

I Diferenciální a integrální počet funkcí jedné proměnné 3

I Diferenciální a integrální počet funkcí jedné proměnné 3 Obsh I Diferenciální integrální počet funkcí jedné proměnné 3 Preklkulus 5. Reálná čísl................................................ 5. Funkce jejich zákldní vlstnosti....................................3

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

2.3 Aplikace v geometrii a fyzice... 16

2.3 Aplikace v geometrii a fyzice... 16 Obsh Derivce 3 Integrály 7. Neurčité integrály.................. 7. Určité integrály................... 3.3 Aplikce v geometrii fyzice............ 6 3 Diferenciální rovnice 8 3. Motivce.......................

Více

Matematická analýza II NMAI055

Matematická analýza II NMAI055 Mtemtická nlýz II NMAI055 Robert Šáml (Prlelk Y) Pokrčování z MA1 Vět 4.1 (Jensenov nerovnost). Pokud je f konvexní n [, b], x 1,..., x n [, b] pltí λ 1,..., λ n [0, 1], n i=1 λ i = 1 (konvexní kombince);

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Poznámka. Využití: věty o limitách, popisy intervalů: (, 0) = {x R : < x < 0} = {x R : x < 0}, (, + ) = R (otevřené i s ± ).

Poznámka. Využití: věty o limitách, popisy intervalů: (, 0) = {x R : < x < 0} = {x R : x < 0}, (, + ) = R (otevřené i s ± ). Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná č: délky úseček, doplnění limit, suprem, infim, des rozvoj:,, Z, n {,, 9} pro n N R \ Q ircionální

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Bylo uvedeno, že rozdíl F (b) F () funkčních hodnot primitivní funkce k

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

Poznámka. Využití: věty o limitách, popisy intervalů: (, 0) = {x R : < x < 0} = {x R : x < 0}, (, + ) = R (otevřené i s ± ).

Poznámka. Využití: věty o limitách, popisy intervalů: (, 0) = {x R : < x < 0} = {x R : x < 0}, (, + ) = R (otevřené i s ± ). v 8--7 Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná č: délky, doplnění it, suprem/infim, řezy R \ Q ircionální čísl, π, e, ) C komplení čísl:

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

I Diferenciální a integrální počet funkcí jedné proměnné 5

I Diferenciální a integrální počet funkcí jedné proměnné 5 Obsh I Diferenciální integrální počet funkcí jedné proměnné 5 Preklkulus 7. Reálná čísl................................................ 7. Funkce jejich zákldní vlstnosti...................................

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funke Riemnnův integrál VIII.2. Primitivní funke Definie. Neht funke f je definován n neprázdném otevřeném intervlu I. Řekneme, že funke F W I! R je primitivní funke k f n I, jestliže

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

1/15. Kapitola 2: Reálné funkce více proměnných

1/15. Kapitola 2: Reálné funkce více proměnných 1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

NMAF061, ZS Písemná část zkoušky 16. leden 2018

NMAF061, ZS Písemná část zkoušky 16. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6

Více

Masarykova univerzita

Masarykova univerzita Msrykov univerzit Přírodovědecká fkult Diplomová práce Web k témtu: Integrální počet Bc. Ev Schlesingerová Brno 9 Prohlášení Prohlšuji, že jsem tuto diplomovou práci npsl sm s použitím uvedené litertury.

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

LEKCE10-RAD Otázky

LEKCE10-RAD Otázky Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá

Více

Fakulta aplikovaných věd

Fakulta aplikovaných věd Zápdočeská univerzit v Plzni Fkult plikovných věd Diplomová práce Mgr. Ev Kleknerová RŮZNÉ TYPY INTEGRÁLŮ A JEJICH APLIKACE Fkult plikovných věd Vedoucí diplomové práce: RNDr. Petr Tomiczek, CSc. - KMA

Více